Automorphic Lie Algebras with Dihedral Symmetry

نویسندگان

  • Vincent Knibbeler
  • Sara Lombardo
  • Jan Sanders
چکیده

Automorphic Lie Algebras are interesting because of their fundamental nature and their role in our understanding of symmetry. Particularly crucial is their description and classification as it allows us to understand and apply them in different contexts, from mathematics to physical sciences. While the problem of classification of Automorphic Lie Algebras with dihedral symmetry was already considered in the past (see for instance [5], [6], and [7]), it was never addressed in full generality, where one takes any two representations of the dihedral group. Indeed, all results so far have been obtained under the simplifying assumption that one can use the same dihedral representation to define an action on either the space of vectors or matrices, and over the polynomials. In this paper we present a complete classification of Automorphic Lie Algebras with dihedral symmetry, starting from any two representations. In the light of this result we show that Automorphic Lie Algebras with dihedral symmetry are isomorphic, thereby extending the uniformity result of Lombardo and Sanders [7] and Bury [1]. Furthermore, we consider also the case of invariant vectors and compute the corresponding Molien functions; their knowledge allows us to compute symmetric rational maps related to the energy of Skyrmions with dihedral symmetry.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Classification of Automorphic Lie Algebras

It is shown that the problem of reduction can be formulated in a uniform way using the theory of invariants. This provides a powerful tool of analysis and it opens the road to new applications of these algebras, beyond the context of integrable systems. Moreover, it is proven that sl2(C)–Automorphic Lie Algebras associated to the icosahedral group I, the octahedral group O, the tetrahedral grou...

متن کامل

Reduction Groups and Automorphic Lie Algebras

We study a new class of infinite dimensional Lie algebras, which has important applications to the theory of integrable equations. The construction of these algebras is very similar to the one for automorphic functions and this motivates the name automorphic Lie algebras. For automorphic Lie algebras we present bases in which they are quasigraded and all structure constants can be written out e...

متن کامل

Generalized Moonshine Ii: Borcherds Products

The goal of this paper is to construct infinite dimensional Lie algebras using infinite product identities, and to use these Lie algebras to reduce the generalized moonshine conjecture to a pair of hypotheses about group actions on vertex algebras and Lie algebras. The Lie algebras that we construct conjecturally appear in an orbifold conformal field theory with symmetries given by the monster ...

متن کامل

Monomial Irreducible sln-Modules

In this article, we introduce monomial irreducible representations of the special linear Lie algebra $sln$. We will show that this kind of representations have bases for which the action of the Chevalley generators of the Lie algebra on the basis elements can be given by a simple formula.

متن کامل

Symmetry classes of polynomials associated with the dihedral group

‎In this paper‎, ‎we obtain the dimensions of symmetry classes of polynomials associated with‎ ‎the irreducible characters of the dihedral group as a subgroup of‎ ‎the full symmetric group‎. ‎Then we discuss the existence of o-basis‎ ‎of these classes‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012